Signing

In this section, we describe the signing process of the protocol. For any set \(S \in \{1,\dots,n\}\) of \(t+1\) participants who participate to sign a message \(M\), let \(w_i=\lambda_{i,S}\cdot sk_i \pmod{p}\). Note that by Feldman's VSS, \(sk=\sum_{i \in S} w_i\). Note that since \(pk_i=g^{sk_i} \) is public after the key generation process, hence the value \(W_i=g^{w_i}=pk_i^{\lambda_{i,\mathcal{S}}}\) can also be publicly computed. The signing protocol follows a \(6\) steps process below:

Sign\((M)\langle \{P_i(sk_i)\}_{i=1}^n\rangle\):

  1. Each participant \(P_i\) choose \(k_i,\gamma_i \in \mathbb{Z}_p\) and does the following:

    1. Compute \(K_i=\mathsf{Enc}_i(k_i), G_i=\mathsf{Enc}_i(\gamma_i)\)

    2. Compute a proof \(\pi_i\) certifying \(k_i \in [1,2^{3\lambda}]\) (see Supporting Protocols).

    3. Send \((K_i,G_i,\pi_i)\) to all participants.

Define \(k=\sum_i k_i\) and \(\gamma=\sum_i \gamma_i\). We see that \(k\gamma=\sum _{i,j} k_i \gamma_j \pmod{p}\) and \(k\cdot sk=\sum _{i,j} k_i w_j \pmod{p}\).

  1. For each \(j \neq i\), each participant \(P_i\) does the following:

    1. Verify the validity of \(\pi_j\). If any check fails, the protocol aborts.

    2. Sample \(\beta_{ij},v_{ij} \in [1,\dots,2^{7\lambda}]\)

    3. Comute \(C_{ji}=\mathsf{Enc_j}(\gamma_ik_j-\beta_{ij})=\gamma_i\cdot K_j-\mathsf{Enc_j}(\beta_{ij})\) and \(C_{ji}'=\mathsf{Enc_j}(w_ik_j-v_{ij})=w_i\cdot K_j-\mathsf{Enc_j}(v_{ij})\)

    4. Compute \(F_{ji}=\mathsf{Enc_i}(\beta_{ij})\), \(F_{ji}'=\mathsf{Enc_i}(v_{ij})\), \(\Gamma_i=g^{\gamma_i}\) and a proof \(\pi_i^1\) which proves that \(G_i=\mathsf{Enc_j}(\gamma_i)\), \(\Gamma_i=g^{\gamma_i}\) and \(\gamma_i<2^{3\lambda}\). The generation of \(\pi_1^i\) can be seen in Supporting Protocols

    5. Compute the proof \(\pi_i^2\) which prove that \((C_{ji},W_i,K_j,F_{ji},\gamma_i,\beta_{ij})\) satisfy the following relations

      • \(C_{ji}=\gamma_i\cdot K_j-\mathsf{Enc_j}(\beta_{ij}) \)
      • \(\Gamma_i=g^{\gamma_i} \)
      • \(F_{ji}=\mathsf{Enc_2}(\beta_{ij}) \)
      • \(\beta_{ij} \le 2^{7\lambda} \)
      • \(\gamma_i \le 2^{3\lambda} \)

    The generation of \(\pi_i^2\) can be seen in Supporting Protocols.

    1. Compute the proof \(\pi_i^3\), which prove that \((C_{ji}',\Gamma_i,K_j,F_{ji}',w_i,v_{ij})\) satisfy the following relations
      • \(C_{ji}'=w_i\cdot K_j-\mathsf{Enc_j}(v_{ij}) \)
      • \(W_i=g^{w_i}\)
      • \(F_{ji}'=\mathsf{Enc_2}(v_{ij})\)
      • \(v_{ij}<2^{7\lambda} \)
      • \(w_i \le 2^{3\lambda} \)

    The generation of \(\pi_i^3\) can be seen in Supporting Protocols.

    1. Send \(C_{ji},C_{ji}',F_{ji},F_{ji}',\Gamma_i,\pi_i^1,\pi_i^2, \pi_i^3\) to all participants.
  2. For each \(j \neq i\), each participant \(P_i\) does the following:

    1. Verify the validity of \(\pi_j^1,\pi_j^2,\pi_j^3\). If any check fails, then the protocol aborts.

    2. Compute \(\alpha_{ij}=\mathsf{Dec_i}(C_{ij})\) and \(u_{ij}=\mathsf{Dec_i}(C_{ij}') \). Note that \(\alpha_{ij}+\beta_{ij}=\gamma_i k_j\pmod{p}\) and \(u_{ij}+v_{ij}=w_i k_j \pmod{p}\).

    3. Set \(\delta_i=k_i\gamma_i+\sum_{j \neq i}(\alpha_{ij}+\beta_{ij}) \pmod{p}\) and \(\sigma_i=k_iw_i+\sum_{j \neq i}(u_{ij}+v_{ij})\pmod{p}\). Note that \(k\gamma=\sum_i\delta_i \pmod{p}\) and \(k\cdot sk=\sum_i \sigma_i \pmod{p}\).

  3. Each participant \(P_i\) computes \(\Gamma=\prod_i \Gamma_i=g^\gamma\), \(\Delta_i=\Gamma^{k_i}=g^{\gamma k_i}\) and send \(\delta_i,\Delta_i\) to all participants.

  4. Each participant \(P_i\) sets \(\delta=\sum_i\delta_i=k\gamma\) and verify that \(g^{\delta}=\sum_i\Delta_i\). If any check fails, the protocol aborts. Otherwise, set \(R=\Gamma^{\delta^{-1}}=g^{\gamma(k\gamma)^{-1}}=g^{k^{-1}}\) and \(r=R.\mathsf{x}\).

  5. Each participants \(P_i\) computes \(m=\mathsf{H}(M)\), then broadcasts \(s_i=m k_i+r \sigma_i \pmod{p}\). and set \(s=\sum_{i} s_i=k(m+r\cdot sk) \pmod{p}\). If Verify\(((M,(r,s),pk)=1\) then \((r,s)\) is a valid signature of \(M\), otherwise aborts.